大家好,我是小曜,我来为大家解答以上问题。内容分析法,内容分析很多人还不知道,现在让我们一起来看看吧!
1、确定变量:
明确定义了预测的具体目标,并确定了因变量。 如果预测目标是下一年的销售量,则销售量Y是因变量。 通过市场调查和数据访问,找出与预测目标相关的相关影响因素,即自变量,并选择主要影响因素。
2、建立预测模型:
依据自变量和因变量的历史统计资料进行计算,在此基础上建立回归分析方程,即回归分析预测模型。
3、进行相关分析:
回归分析是因果因素(自变量)和预测因子(因变量)的数学统计分析。 只有当自变量和因变量之间存在某种关系时,建立的回归方程才有意义。 因此,作为自变量的因子是否与作为因变量的预测对象相关,程度的相关程度以及判断相关程度的程度是在回归分析中必须解决的问题。 相关分析通常需要相关性,并且相关度系数用于判断自变量和因变量之间的相关程度。
4、计算预测误差:
回归预测模型是否可用于实际预测取决于回归预测模型的测试和预测误差的计算。 回归方程只能通过回归方程作为预测模型来预测,只有当它通过各种测试且预测误差很小时才能预测。
5、确定预测值:
利用回归预测模型计算预测值,并对预测值进行综合分析,确定最后的预测值。
扩展资料:
回归分析的应用:
1、相关分析研究的是现象之间是否相关、相关的方向和密切程度,一般不区别自变量或因变量。而回归分析则要分析现象之间相关的具体形式,确定其因果关系,并用数学模型来表现其具体关系。比如说,从相关分析中我们可以得知“质量”和“用户满意度”变量密切相关,但是这两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,则需要通过回归分析方法来确定。
2、一般来说,回归分析是通过规定因变量和自变量来确定变量之间的因果关系,建立回归模型,并根据实测数据来求解模型的各个参数,然后评价回归模型是否能够很好的拟合实测数据;如果能够很好的拟合,则可以根据自变量作进一步预测。
参考资料来源:百度百科 - 回归分析
本文到此讲解完毕了,希望对大家有帮助。