集合的概念教学设计(集合的概念)

导读 大家好,我是小曜,我来为大家解答以上问题。集合的概念教学设计,集合的概念很多人还不知道,现在让我们一起来看看吧!集合论的基础是由德...

大家好,我是小曜,我来为大家解答以上问题。集合的概念教学设计,集合的概念很多人还不知道,现在让我们一起来看看吧!

集合论的基础是由德国数学家康托尔在19世纪70年代奠定的,经过一大批科学家半个世纪的努力,到20世纪20年代已确立了其在现代数学理论体系中的基础地位,可以说,现代数学各个分支的几乎所有成果都构筑在严格的集合理论上。

集合基数:

集合中元素的数目称为集合的基数,集合A的基数记作card(A)。当其为有限大时,集合A称为有限集,反之则为无限集。一般的,把含有有限个元素的集合叫做有限集,含无限个元素的集合叫做无限集。

表示:

假设有实数x < y:

①[x,y] :方括号表示包括边界,即表示x到y之间的数以及x和y;

②(x,y):小括号是不包括边界,即表示大于x、小于y的数。

扩展资料

集合的性质:

1、确定性

给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。

2、互异性

一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。

3、无序性

一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。

参考资料来源:搜狗百科-集合

本文到此讲解完毕了,希望对大家有帮助。

最新文章