伴随矩阵的秩与矩阵的秩的关系(伴随矩阵)

导读 大家好,我是小科,我来为大家解答以上问题。伴随矩阵的秩与矩阵的秩的关系,伴随矩阵很多人还不知道,现在让我们一起来看看吧!1、矩阵的...

大家好,我是小科,我来为大家解答以上问题。伴随矩阵的秩与矩阵的秩的关系,伴随矩阵很多人还不知道,现在让我们一起来看看吧!

1、矩阵的逆等于伴随矩阵除以矩阵的行列式,所以现在只要求原矩阵的行列式即可。

2、A^*=A^(-1)|A|,

3、两边同时取行列式得

4、|A^*|=|A|^2 (因为是三阶矩阵)

5、又|A^*|=4,|A|>0,所以|A|=2

6、所以A^(-1)=A^(*)/2,就是伴随矩阵除以2。

7、特殊求法:

8、(1)当矩阵是大于等于二阶时 :

9、主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以 

10、 , x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始。主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以 

11、 ,一直是正数,没必要考虑主对角元素的符号问题。

12、(2)当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。

13、(3)二阶矩阵的求法口诀:主对角线元素互换,副对角线元素加负号。

14、矩阵性质

15、矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷。逆矩阵又是矩阵理论的很重要的内容,逆矩阵的求法自然也就成为线性代数研究的主要内容之一。

16、设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。其中,E为单位矩阵。

17、典型的矩阵求逆方法有:利用定义求逆矩阵、初等变换法、伴随阵法、恒等变形法等。

本文到此讲解完毕了,希望对大家有帮助。

最新文章